Chapter 1 Right Triangle Trigonometry

- 1. Angles, Degrees, and Triangles
- 2. Similar Triangles
- 3. Right Triangle Ratios
- 4. Evaluating Trigonometric Functions
- 5. Solving Right Triangles

Basics of Triangles

1.1 - Angles, Degrees, and Triangles

Triangle Sum Theorem

The sum of the interior angles is 180°.

Pythagorean Theorem

In any right triangle $a^2 + b^2 = c^2$

1.1 - Angles, Degrees, and Triangles 2/19 Special Right Triangles

- Pythagorean Triples Integer numbers that satisfy the Pythagorean Theorem. $3^2 + 4^2 = 5^2$ $5^2 + 12^2 = 13^2$ $8^2 + 15^2 = 17^2$
- 45°-45°-90°

• 30°-60°-90°

1.1 - Angles, Degrees, and Triangles 3/19 Practice

1.1 - Angles, Degrees, and Triangles Real World Problem London Eye

The wheel takes 30 minutes to make a complete rotation. What will it rotate in 12 minutes?

144°

1.1 - Angles, Degrees, and Triangles Real World Problem ^{5/19} Clock

The hands of a clock are at 10:40. What acute angle do the big and little hands make?

80°

1.2 - Similar Triangles

Similar triangles -

corresponding angle measures equal and side measures proportional

Congruent triangles - equal corresponding angle measures and equal corresponding side measures

1.2 - Similar Triangles

Cape Hatteras Lighthouse - The lighthouse is the tallest in North America. If a 5 ft woman casts a 1 1/2 foot shadow and the lighthouse casts a 48 ft shadow, approximately how tall is the lighthouse?

160 ft

1.2 - Similar Triangles

24

Practice

a. Find the unknown sides

a = 5 **b** = 8

 $x \approx 32.57 ft$

b. Billy wants to find the height of a tree. He measures the shadow of the tree. He also measures the height and shadow of a stake in the ground.

27 15 NOT TO SCALE x ft 3 ft 1.75 ft

Trigonometric Ratios

Α

1111111111111

k (y₀+y)

Mg

- Uses of Trigonometry
 - Oscillation
 - Recurring events
 - Parametric equations
 - Polar rose curves
 - AC current

Tidal Oscillation

<u>**Tidal Oscillation:**</u> the slow, rocking motion of ocean water that occurs as the tidal bulges move around the ocean basins.

Trigonometry is based on:

Similar right triangles - corresponding angle measures equal and side measures proportional

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

Setting Your Calculator

We are using degrees - "D" or "DEG" on calculator Another setting is radians - "R" or "RAD" on calculator FYI, $360^{\circ} = 2\pi$ radians

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

Find the values x and y to the nearest hundredth.

$$\sin 67 = \frac{x}{120} \qquad \cos 67 = \frac{y}{120}$$
$$x = 120 \sin 67 \qquad y = 120 \cos 67$$
$$x \approx 120(0.9205) \qquad y \approx 120(0.3907)$$
$$x \approx 110.46 \qquad y \approx 46.89$$

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

Practice: Find the values of x and y to the nearest hundredth.

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

What about finding θ ?

$$\cos \theta = \frac{4}{11}$$
$$\cos^{-1}(\cos \theta) = \cos^{-1}\left(\frac{4}{11}\right)$$

 $\theta \approx 68.68^{\circ}$

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

Main identities - the three main trigonometric identities (Mnemonic: SOH-CAH-TOA).

 $\sin \theta = \frac{opposite}{hypotenuse} \quad \cos \theta = \frac{adjacent}{hypotenuse} \quad \tan \theta = \frac{opposite}{adjacent}$

Cosecant, secant, and cotangent are reciprocals of ...

$$\csc \theta = \frac{1}{\sin \theta} = \frac{c}{b}$$
$$\sec \theta = \frac{1}{\cos \theta} = \frac{c}{a}$$
$$\cot \theta = \frac{1}{\tan \theta} = \frac{a}{b}$$

Practice: Give the values of the six trigonometric functions of θ .

Practice: Ishaan and Sania are planning to hike to the top of a hill. If θ is the angle formed by the hill and the ground such that sec $\theta = 1.75$, find sin θ .

 $\sin\theta = 0.821$

